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ABSTRACT Traditionally, individual algorithm developers directly 
incorporate the requirements of their scheme into its 
resulting software implementation.  While this is 
sufficient for basic execution, it severely limits the 
expandability and growth potential of the algorithm.  
An example of such a shortcoming is a fixed method of 
geometry access in a surface triangulation algorithm.  
By adopting a single description for the defining 
geometry, and embedding it within the implementation, 
the triangulation developer will fix, for all practical 
purposes, the form of geometry supported by the 
algorithm.  A change to the method of geometry access 
requires knowledge of, and the ability to edit, the 
triangulation algorithm.  The level of work required for 
such a change depends highly on the forethought and 
style of the initial incorporation.  The approach 
advocated here, however, is to define a set of standard 
software interfaces for key elements of the unstructured 
grid generation process.  In this example, the interface 
separates the specifics of the method for geometry 
access from those of the triangulation algorithm.  As 
such, the triangulation algorithm is largely independent 
of the form of the underlying geometry.  It accesses 
geometry solely through the interface and does so 
without regard for the method of implementation 
supporting the interface.  Therefore, a given method of 
geometry access can be later modified, or replaced, as 
dictated by arising needs without directly impacting the 
triangulation algorithm itself. 

An open framework for the development of software 
applications in the field of unstructured numerical grid 
generation is presented.  The goal of the framework is 
to define an Application Programming Interface that 
allows developers of grid generation software to 
seamlessly integrate alternative algorithms into their 
respective products.  The presentation centers on 
decoupling the grid generation task into separate, 
largely independent component processes.  The 
component processes are implemented following the 
guidelines of a standard software interface definition 
and can therefore be interchanged without the need to 
modify algorithm specifics.  The approach contained 
herein provides for support of both legacy and 
emerging technology and is demonstrated through the 
description of a new unstructured grid generation 
package under development at the NASA Langley 
Research Center. 

INTRODUCTION 

The field of unstructured numerical grid generation has 
gained widespread acceptance in recent years with the 
introduction of techniques and software systems for the 
rapid, highly automated production of discretizations 
for complex domains1-4.  Though there are a number of 
productive tools and techniques available, the state of 
the art has yet to fully mature.  New algorithms and 
techniques are regularly being introduced.  As such, it 
is in the interest of an application developer to have 
available the ability to quickly incorporate and leverage 
these alternative technologies with minimum impact on 
a dependent application.  Also of interest is the ability 
to combine algorithms from multiple sources, where 
applicable, thereby expanding the impact and 
advantages of each. 

This paper considers the construction of such a 
standardized software interface for use in unstructured 
grid generation products.  The interface construction 
starts by analyzing the overall process of unstructured 
grid generation.  The process is broken down into its 
constituent component sub-processes for which 
software interfaces can be defined.  From each 
component, a rule set of common requirements and 
results is constructed.  The rule set defines the types of 
requests and expected outcomes available from each 
identified sub-process.  From this common rule set the 
definition of a general Application Programming 
Interface (API) for unstructured grid generation results. 
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We consider here only the operations relevant to the 
task of unstructured grid generation and strive to 
encapsulate disciplines to minimize interdependence.  
We also make the distinction between the software 
interface, dependent algorithms, and derivative 
applications.  The interface will be the software link 
that provides loose coupling between the 
implementation of algorithms which are dependent on 
the operations defined by the interface.  A derivative 
application is one which makes use of the dependent 
algorithms, and possibly the interface directly, to 
accomplish the grid generation task. 

PROCESS DECOUPLING 

The process of unstructured grid generation, when 
analyzed, can be broken into a series of three major 
constituent sub-process components.  Each sub-process 
may be viewed as loosely coupled to other sub-
processes in that, while dependent on the data provided 
by another sub-process, it is independent of the specific 
details required to produce that data (i.e. 
implementation).  This characteristic is what defines the 
methods of a given sub-process and makes possible the 
generic interaction of the sub-processes through a 
standard interface definition.  The sub-processes 
identified in the current work are described in detail 
below and include geometry access, grid metric 
specification, and the primary goal of meshing.  Each of 
the sub-processes is required to interact through the 
respective standard interface definitions in order to take 
full advantage of the benefits of interchangeability and 
encapsulation. 

Geometry 

The process of unstructured grid generation centers 
about a geometry of interest.  Information required 
from the geometry is, in general, either of a query 
nature or results from the evaluation of an entity.  The 
geometry may be represented in a variety of forms from 
discrete points to higher order spline representations, 
such as Non-Uniform Rational B-Splines (NURBS) and 
higher level Boundary Representations (B-Rep) 5, 6 from 
Computer Aided Design (CAD) systems.  In addition to 
the basic geometry definition, topological information 
is required to relate how the individual entities are 
connected to construct the domain of interest.  While 
this topological data is provided by B-Reps, and 
consequently by most major CAD systems, it must be 
provided by other means for less rigorous descriptions.  
In any event, the topological data is essential to the 
process of unstructured grid generation in that it 
provides the intelligence that allows the process to be 

automated.  It is the topology that provides the 
boundaries of a surface to be meshed and the 
connectivity of those surface regions that form the 
domain boundary. 

The current work employs the Computational Analysis 
Programming Interface (CAPrI)7,8 as the basis for 
geometry access.  CAPrI is a CAD-vendor neutral API 
used to access computational solid geometry related 
information directly from the kernel of the originating 
CAD system.  The CAPrI API offers a layer of 
abstraction from the specific methods of a given CAD 
kernel’s API while ultimately utilizing the original 
system used to create the subject geometry.  This level 
of abstraction is in direct alignment with the approach 
presented here in that the abstraction insulates an 
application from the nuances of various supported CAD 
kernels.  The API provides the operations that are 
common across the supported systems and provides for 
interrogation, data tagging, and the creation of solid 
primitives.  By using the CAPrI API, an application is 
seamlessly integrated into all of the supported CAD 
systems without the need for software modification.  
CAPrI operations are restricted to manifold solid 
geometry, such as that defined by most modern CAD 
systems, and as such provides a closed topological 
description of the domain of interest.  CAPrI also 
provides a closed tessellation9 of the subject part that 
may be used to ensure physical consistency of the 
model.  Therefore, inherent in the design of CAPrI, all 
of the geometric and topological information required 
for intelligently automated unstructured grid generation 
is available to derivative applications. 

The geometry interface of this work draws largely from 
the design of CAPrI.  However, an additional layer of 
abstraction is used to encapsulate the geometry 
operations such that they may be replaced or enhanced 
as directed by future needs.  One such change might be 
to support geometry-only definitions.  A primary 
example of such a definition is that of legacy IGES 
data.  This type of data would require combination with 
a separate description of the topology for use in 
automated grid generation and as such does not fit into 
the current design goals of the CAPrI API.  The 
additional abstraction used here will provide the 
possibility of such future support if deemed necessary. 

Grid Metrics 

The primary grid metric considered in the current work 
is element size.  For this information, it is assumed that 
the API should be implemented in a manner so as to 
query data specified by the user.  It is further assumed 
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that the caller of the API method will supply a location 
in the Cartesian space for which element size 
information is to be provided.  Element size will be in 
the form of local edge lengths corresponding to each of 
three principal directions.  From this information, a 
general second-order tensor can be defined to create the 
appropriate mappings to account for anisotropic grid 
generation10-13.  In keeping with the theme of 
encapsulation, the details of the user’s specification 
scheme are irrelevant.  This specification can be of the 
form of a background mesh, edge seeding, analytic 
functions, etc.  By using the standard grid metric 
interface, dependent algorithms are not directly linked 
to the specification scheme.  Dependent algorithms are 
also able to seamlessly take advantage of any scheme 
chosen at a later date as implemented in a derivative 
application. 

Meshing 

The meshing process is broken into three phases.  The 
phases are viewed in a hierarchical fashion and are 
defined by the geometrical entities that are to be 
discretized.  First, the meshing of edges (the one 
dimensional curve entities bounding the surfaces that 
define the domain’s extent) is considered.  The two 
dimensional surface regions that bound the domain are 
then meshed subject to the results of the edge 
discretization.  Finally, with the discretization of edges 
and bounding surfaces complete, the meshing of the 
volume interior can begin. 

The phases are kept as separate procedures to add 
flexibility to the method of execution.  For example, 
edges, instead of being incorporated into the surface 
meshing procedure, may either be discretized all at 
once prior to any surface meshing in a batch utility, or 
may be processed on an “as needed” basis in an 
interactive package.  The latter method may be desired 
if the user is to be allowed to mesh individual groups of 
surfaces as part of an iterative grid evaluation process.  
This ordering of operations allows for faster individual 
surface computation in that only the edges bounding the 
subject surface(s) must be computed prior to surface 
meshing.  Also, due to the two-manifold nature of the 
topology, some edges may have been computed by 
prior operations on an adjacent surface included in the 
current group.  This method, however, does require 
added logistical support to ensure agreement of the 
edge and surface with current grid metric specifications.  
By separating the edge and surface discretization 
methods, the decision is delegated to the application 
developer based on the specific needs of the package.  

A similar case can be made for separating the surface 
and volume phases. 

The meshing process depends on data produced by both 
the geometry and grid metric components.  Geometric 
data is required for point placement, connectivity, etc.  
Grid metrics are required to prescribe the desired edge 
lengths and overall element quality.  In order for the 
meshing algorithm to be truly extensible, the 
implementation should leverage the capabilities of the 
other component processes through the prescribed 
interface.  Though not required, it is in the interest of 
the derivative application developer that this limit on 
interaction be imposed.  This practice removes the 
dependency of the meshing algorithm from the details 
of the method of producing the required data.  By 
relying on a proprietary means for producing similar 
results, the algorithm developer dictates the method to 
be used by resulting applications and therefore 
adversely limits the applicability of the algorithm. 

APPLICATION PROGRAMMING INTERFACE 

By identifying the major component sub-processes of 
the grid generation procedure, we are now in a position 
to define the API to be used for their interaction.  
Simply put, the API defines a set of rules to govern the 
interaction of dependent algorithms.  The rule set also 
applies to the interaction of the derivative applications 
with respect to dependent algorithms.  The API also 
defines a common entry point to each method of a 
component sub-process.  As such, all dependent 
algorithms and derivative applications call the same 
routine regardless of the underlying implementation.  
Each method of the API can therefore be viewed as an 
abstraction satisfying a request, subject to some fixed 
set of input requirements, to produce an expected result.  
Another view of the API is that of a generic 
implementation of the component sub-processes. 

Consider the following scenario where a procedure, 
Function A, requires data from a given component sub-
process.  Here Function A may represent a dependent 
algorithm or a derivative application.  Two valid 
procedures to produce the data are represented by 
Algorithm 1 and Algorithm 2.  The data is provided 
through the API with Method B.  What follows are 
three different approaches for implementing the API  
Method B in an attempt to seamlessly integrate the 
capabilities to produce the data of either Algorithm 1 or 
Algorithm2 in an unaltered Function A.  Each approach 
results in Method B satisfying the request of Function 
A. 
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At its most rudimentary level, Method B can be a direct 
implementation of a specific algorithm.  This is the case 
represented by Figure 1.  Method B is a direct 
implementation in that it directly includes the coding of 
the Algorithm 1 while following the interface definition 
and adhering to the API naming convention.  Therefore 
the single API entry point, Method B, can only produce 
data via Algorithm 1.  In other words, while “legal”, 
this form is limited in scope to the use of Algorithm 1 to 
produce the data. 

Another approach would be to create Method B such 
that it acts as an intermediary.  Figure 2 is a 
representation of this approach.  Here Method B is 
aware of the “current algorithm” in use by the overall 

derivative application through the use of a global 
parameter.  The parameter is then used as a switch to 
provide runtime selection of the desired algorithm.  
Method B can therefore make the appropriate call to 
produce the required data.  This approach provides a 
great deal of flexibility to the application developer by 
allowing for user selection of the appropriate algorithm 
used to produce the desired data needed by Function A 
without the need to recode the derivative application or 
any of the algorithm implementations. 

Yet another approach might be to define multiple 
versions of the 1st approach, one for each 
implementation of a different algorithm used to produce 
the data.  As shown in Figure 3, each implementation of 
Method B would then be used to construct a separate 
Dynamic Shared Object (DSO) library.  Depending on 
the method of DSO selection at runtime, a capability to 
dynamically control the algorithm used to implement 
Method B, and therefore the operation of Function A 
can be achieved without requiring source code changes 
to the derivative application.  This approach provides a 
means of adding capability to an existing application in 
keeping with the development of new technology. 

Function A Method B 

Function A Method B 
  …   … 
  Call Method B   Algorithm 1 
  Use results   Return results 
  …   … 
End Function A End Method B 

Figure 1 – Direct Implementation

DSO 1 
Function A 

DSO 2 

Function A Method B 

Function A Method B 
  …   … Algorithm 1 Algorithm 2   Call Method B   Algorithm # 
  Use results   Return results 
  …   … Function A Method B End Function A End Method B   …   … 

  Call Method B  Switch( param ) 
  Case Algorithm 1   Use results 

DSO 1  Call Algorithm 1   … 
End Function A  End Case Algorithm 1 Method B   Case Algorithm 2 

 Call Algorithm 2 
 End Case 

DSO 2  End Switch 
  Return results 

Algorithm 2 Method B   … 
End Method B 

Figure 2 – Switched Implementation Figure 3 – DSO Implementation 
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In all approaches the API provides an abstraction layer 
to the algorithm implementations.  This layer 
encapsulates modifications, enhancements, and errors 
within the algorithm implementation and prohibits the 
propagation of any changes into the dependent code. 

Geometry 

The geometry API used in the current work is a 
transparent abstraction of the CAPrI interface.  
Therefore, its description will not be duplicated here.  
Readers are referred to the CAPrI documentation8 for 
additional information.  However, as stated, the 
abstraction is used to allow for flexibility in future 
implementations.  All interaction with the geometry 
will be conducted through the abstracted interface.  
This is in keeping with the general theme of 
encapsulation.  Also the abstraction provides the ability 
to replace this pass thru implementation with any 
number of modifications or augmentations.  Though not 
immediately foreseen, these changes may be required 
by future needs, and will as a result have minimal 
impact on any derivative code. 

Grid Metrics 

The API for grid metrics in the current work consists of 
a single method.  The method is used to produce the 
desired cell edge lengths for a given location within the 
domain.  A calling function makes a request of the 
method to return the edge lengths at a point in the 
Cartesian space of the subject domain.  In return the 
method will satisfy the request with desired edge 
lengths relative to three given principal directions.  The 
method from the current work has the following form in 
syntax similar to that of the C language. 

GMetric_GetSpacing(x,y,z,s,dir) 

Double *x – Target X coordinate 

Double *y – Target Y coordinate 

Double *z – Target Z coordinate 

Double s[3] – Edge lengths 

Double dir[3] – Principal directions 

The arguments of this method are all passed by 
reference to facilitate its use by dependent methods 
written in both the C and FORTRAN languages.  The 
interface also defines this method as an integer function 
that returns a value indicative of the success of the 
operation. 

Meshing 

Each phase of the meshing process is assigned a 
separate interface within the API. Arguments to all 

methods are again passed by reference to facilitate their 
use by dependent methods written in both the C and 
FORTRAN languages.  Again the interface also defines 
the methods as integer functions that return a value 
indicative of the success of the operation.  Both the 
edge and surface meshing phases require the input of 
geometry entity identifiers.  In keeping with the 
definitions given by the CAPrI API, the geometry 
identifiers will consist of both volume and entity ids.  
The volume id permits the meshing of entities from 
multiple domains as may be the case for an overset 
meshing application14.  The entity id represents the 
target entity of the respective volume. 

Edge meshing requires the additional input of the 
coordinates for the two bounding points, or nodes, on 
the defining curve.  Upon satisfying the request, the 
edge meshing implementation will return the number of 
computed nodes, including the input bounding points, 
along with the physical and parametric coordinates of 
each node in the edge discretization.  The parametric 
coordinates are relative to the defining curve of the 
target edge entity.  The returned nodes are ordered 
monotonically from the first bounding point to the 
second, etc.  This implies the orientation of the discrete 
edge segments.  Coordinate values are returned as 
arrays with their respective components (i.e. x,y,z and 
u,v) as the major ordering.  The current work defines 
the edge meshing interface as follows. 

UGMesh_DiscretizeEdge(v,e,b,n,c,p) 

Integer *v – Target region 

Integer *e – Target edge entity 

Double *b[3] - Bounding points 

Integer *n – Number of computed nodes 

Double *c[3] – Output physical coords 

Double *p[2] – Output parametric coords 
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The surface meshing interface requires geometry 
identifiers as input, but also requires information about 
the initial boundary discretization.  The current 
interface only supports triangular surface meshing.  The 
boundary information is constructed from data retrieved 
by prior use(s) of the edge meshing interface and 
assembled through access to the model topology using 
the geometry interface.  The input data for the target 
surface consists of the number of initial fixed nodes, the 
fixed node physical coordinates, the number of 
boundary edge segments, and the boundary edge 
segment connectivity list.  The boundary edge segment 
connectivity list is used to allow for multiple boundary 
loops and is oriented such that surface material on the 
left side of a counter-clockwise traversal of the segment 
data is maintained. The segment data references two 



nodes per edge segment with the references relative to 
the fixed node inputs. 

In addition to these required inputs, the interface 
supports the input of edge segments interior to the 
boundaries of the surface.  These edge segments may be 
used to reference fixed nodes that are required of the 
resulting discretization, but are not part of the boundary 
definition.  Such edge segments could be used to define 
non-manifold features on the interior of the surface 
such as corners, wires, pressure port taps, etc. 

After satisfying a request, the face meshing 
implementation will return the number of computed 
nodes, including all fixed node inputs, along with the 
physical and parametric coordinates of each node in the 
surface discretization.  Fixed nodes are listed first in the 
returned data.  The parametric coordinates are relative 
to the target surface entity.  As with the edge meshing 
interface, coordinate values are input and returned as 
arrays with their respective components as the major 
ordering.  Also returned, are the number of computed 
elements and the computed element connectivity.  The 
element connectivity is represented as three integer 
node references relative to the computed node list.  This 
array has the node references as its major order. 

The definition of the triangular surface discretization is 
listed below.  

UGMesh_DiscretizeTriFace(v,s,nf,f,neb,eb, 

 nie,ie,n,c,p,ne,e) 

Integer *v – Target region 

Integer *s – Target surface entity 

Integer *nf – Number of fixed nodes 

Double  *f[3] - Fixed node coords 

Integer *neb - Number of boundary segs 

Integer *eb[2] - Boundary segments 

Integer *nie - Number of Interior segs 

Integer *ie[2] - Interior segments 

Integer *n – Number of computed nodes 

Double *c[3] – Output physical coords 

Double *p[2] – Output parametric coords 

Double *ne – Num of computed elements 

Double *e[3] – Output element defs 

Finally, the interface for the volume meshing 
implementation is defined.  This interface is 
independent of geometry and is therefore only 
dependent on the input surface triangulations forming 
the boundary shell of the volume and the grid metric 
interface.  The surface triangulations are computed with 
prior calls to the surface meshing interface and 
assembled using the underlying topology as accessed 

through the geometry interface.  The volume meshing 
interface definition of the current work only supports 
the generation of tetrahedral volume elements. 

Like the surface meshing interface, the volume meshing 
interface supports the input of additional non-manifold 
discretizations in the form of fixed nodes and 
connectivity.  These non-manifold discretizations may 
be used by the underlying meshing implementation to 
define interior features.  Both interior segments (wires, 
etc.) and interior collections of facets (sheets, wakes, 
etc.) are supported.  The assembled boundary shell data 
is input to the volume meshing interface as: a number 
and list of fixed node coordinates; a number and list of 
the volume shell surface triangle element connectivity; 
a number and list of connectivity for interior facet 
elements; followed by the number and list of the 
interior edge segment connections. 

Once the volume grid has been generated satisfying the 
initial request, the interface returns the data in the 
following form.  The number of computed nodes and 
their respective physical coordinates are returned listing 
the fixed nodes at the beginning of this list in their 
original order.  Also returned are the number and list of 
the volume element definitions.  The definitions are 
represented by four integers that reference the 
computed node list and define the nodes used to create 
each element.  This data assumes that the element 
definition is the major ordering. 

Listed below is the volume discretization interface. 

UGMesh_DiscretizeTetVol(v,nf,f,ns,se,nfi, 

 fi,nie,ie,n,c,ne,e) 

Integer *v – Target region 

Integer *nf – Number of fixed nodes 

Double *f[3] - Fixed node cords 

Integer *ns - Number of shell elements 

Integer *se[3] - Shell elements 

Integer *nfi - Number of interior faces 

Integer *fi[3] - Interior face triangles 

Integer *nie - Number of interior segs 

Integer *ie[2] - Interior segments 

Integer *n – Number of computed nodes 

Double *c[3] – Output physical coords 

Double *ne – Num of computed elements 

Double *e[4] – Output element definition 

APPLICATION 
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The API presented above has been used in the creation 
of GridEx.  This application is a product of the Fast 
Adaptive AeroSpace Tools (FAAST) element of the 



Airframe Systems Concept to Test (ASCOT) program 
of the NASA Langley Research Center.  One of the key 
components to the FAAST effort is the rapid generation 
and adaptation15 of numerical grids directly from CAD 
models.  The grid generation and adaptation capabilities 
are required to be independent of the originating CAD 
system, thereby providing support across the multitude 
of available systems.  In addition, the capabilities must 
be implemented in a manner which facilitates the 
infusion of new techniques that result from FAAST 
research efforts.  The GridEx application uses the 
framework approach presented in this work thereby 
providing the ability to incorporate multiple 
unstructured meshing techniques for tailored use by the 
FAAST team.  The framework also facilitates the 
inclusion of emerging technological advances in 
unstructured methods over the life of the FAAST effort 
and beyond. 

GridEx is an interactive tool used to construct baseline 
unstructured numerical grids for use in Computational 
Fluid Dynamics simulations.  Within the tool, the user 
may interactively: define the domain(s) of interest 
surrounding the subject geometry; impose grid metric 
constraints to govern distribution of discrete grid points 
and the resulting element quality; individually or 
collectively generate surface grids for the constituent 
faces of the solid model; generate volume grids for the 
domain(s) of interest; and visualize the results.  Each 
phase of the grid generation procedure is organized on a 
task oriented tabbed form located on a Graphical User 
Interface (GUI) as shown in Figure 4.  The GUI also 
includes a 3D view of the problem space that can be 
manipulated interactively.  A model tree is provided for 
the hierarchical organization of the problem to include 
boundary condition definition for output to the analysis 
software.  Additional logistical functionality is provided 
by means of a standard application menu bar. 

In addition to the framework basis of the GridEx 
application, one of the unique characteristics of the tool 
is the interaction between grid metric constraint 
specification and grid generation.  The tool allows the 
user to specify grid metric constraints via the method of 
choice by setting appropriate parameters on the tabbed 
form.  At any time during the specification, the user 
may elect to view the localized impact of the 
constraints on one or more selected surface meshes. 
The inspection requires the grid to be generated for the 
subject face(s) and any of the respective component 
edges.  The grid generation is limited to those entities 
specified by the user and is thus very efficient.  This 
process however may result in inconsistencies in the 
surface grid as faces fall out of sync with their 

neighbors.   To allow for this iterative flexibility, a 
mechanism for automated consistency is built into the 
application via the framework.  The method is 
summarized as follows.  The framework maintains 
timestamps on the constraints and on each individual 
component grid (edge, face, and volume).  As such the 
grids are aware of their state relative to the constraint 
specifications.  Prior to volume grid generation all 
component grids are verified against the current state of 
the constraints.  Component grids that are consistent 
with the constraints remain unchanged.  Inconsistent 
component grids are automatically updated and 

assembled for use in volume grid computation.  This 
capability greatly reduces the time required to specify 
the desired metric constraints and provides flexibility 
and automatic consistency to the user. 

Figure 4 - GridEx Application 

GridEx provides the ability to define separate grid 
metric specifications and use them in conjunction with 
the available meshing algorithms to generate 
unstructured tetrahedral meshes directly from the CAD 
definition.  The manifold solid model access provided 
by the CAPrI interface allows for automated topology 
extraction for use in the grid generation procedure.  The 
user is responsible for specifying grid metric constraints 
prior to meshing and has the ability to iteratively 
generate grids on individual geometric entities while 
assessing the local impact of the constraints on the 
quality of the resulting mesh as stated above.  Results 
from multiple metric/meshing algorithms can be 
compared within the same application session and is 
complemented by this iterative potential.  Visualization 
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of grid data is provided in the interactive 3D window.  
Grid inspection is aided via flooded contour plotting of 
predefined grid quality measures.  These contours can 
be viewed for any collection of boundary surfaces 
and/or “crinkle cuts” through the volume grid.   The 
application is a testament to the applicability and 
benefits of the framework API. 

GridEx currently allows the user to specify grid metric 
constraints using the algorithms found in FELISA2 and 
VGRID16.  These algorithms may be used seamlessly 
and interchangeably between both the FELISA and 
VGRID meshing implementations that are currently 
supported.  Current implementations only support 
isotropic grid generation suitable for inviscid flow 
calculations, however work is in progress to support 
anisotropic stretching of elements to support viscous 
calculations.  Both meshing implementations have been 
refactored into a modular set of API conforming 
libraries for use within the framework.  The refactoring 
also included the use of the API to decouple the 
meshing algorithms from the underlying geometry and 
grid metric specification.  As a result the framework 
now provides a matrix of capabilities to the GridEx 
user.  The current matrix is populated as shown in 
Table 1 and is expected to be expanded in the future to 
support additional techniques as required by FAAST. 

 FELISA 
Spacing 

VGRID 
Spacing 

FELISA 
Mesh X X 

VGRID 
Mesh X X 

Table 1 – Surface Grid Generation Capability 

Examples of the flexibility afforded the user by the 
matrix of capabilities is demonstrated in Figure 5.  The 
figure uses surface grids on the nose of a hypersonic 
vehicle to represent each of the four scenarios currently 
available for surface grid generation within GridEx.  
Figure 5a shows the result of a surface grid computed 
using the FELISA meshing algorithm and a traditional 
FELISA background grid.  Figure 5b shows the same 
geometry meshed with the VGRID surface meshing 
algorithm and same FELISA background grid.  The 
background grid used here consists of a line source that 
extends along the longitudinal axis of the vehicle and a 
single point source, centered in the clustered region of 
the figure, which was added for the purpose of 
demonstration.  The point source was defined with a 
constant spacing distance 6 times that of the desired 
edge length defined for the source.  The edge length 

doubling distance was specified as 10 times the source 
edge length.  These parameters are detailed in the 

a) FELISA Mesh from FELISA Background Grid

b) VGRID Mesh from FELISA Background Grid

c) FELISA Mesh from VGRID Background Grid

d) VGRID Mesh from VGRID Background Grid

Figure 5 - Surface Grid Generation Capability 

8 OF 11 
American Institute of Aeronautics and Astronautics Paper 2002-3192 



FELISA User’s Guide2.  Figures 5c and 5d show the 
same progression of meshing algorithm but with a 
VGRID background grid controlling grid clustering.  
Similarly, a line source is defined along the longitudinal 
axis and a point source is defined at the center of the 
clustered region.  The effect of the point source with the 
VGRID background grid decays smoothly with 
increasing distance based on a user specified intensity 
value.  Again, the details of the background grid 
definition are found in the literature16. 

When comparing surface grids generated with different 
meshing algorithms but the same background grid in 
Figure 5, only subtle differences are noted.  This is 
reasonable as both grids adhere to the same metric 
constraints defined by the background grid.  However, 
it is possible that other cases may yield more drastic 
differences.  Fortunately, the decoupled framework 
provides the flexibility to choose the appropriate 
combination best suited for a particular problem at little 
or no cost.  The reader is reminded that, as this figure 
demonstrates, future metric specification schemes can 
be added to the application with no impact to existing 
meshing algorithms. 

A recent enhancement of the GridEx application comes 
from access to the viscous volume grid generation 
capabilities of the AFLR3 software.  AFLR3 is a 
standalone grid generation package based on the 
advancing front local reconnection algorithm3 and is 
capable of generating inviscid as well as viscous 
volume grids from an existing boundary triangulation.  
The tool has the ability to generate fully tetrahedral or 
mixed pentahedral boundary layer grids. 

The framework basis of the GridEx application 
facilitated the integration of AFLR3 resulting in a total 
time to integrate of less than 12 hours.  The integration 
method of choice was the switched implementation 
method detailed above.  Modification to the framework 
was confined to the addition of a new switch branch 
within the volume API.  However, special treatment 
was necessary as the AFLR3 package is invoked as a 
standalone executable code.  As such, the “dependent 
algorithm” here consisted of a wrapper routine used to 
invoke the standalone executable.  The purpose of the 
wrapper was to: create a disk file defining the boundary 
elements obtained through the API along with the 
associated boundary conditions; generate a script to 
control AFLR3 execution, also as a disk file; invoke a 
system call to execute the script; and finally import of 
the AFLR3 volume grid from the disk file generated by 
the execution.  No refactoring of AFLR3 was possible 
for inclusion into the current work.  As such, use of the 

API for dependent algorithms, namely grid metric 
constraint calculation, could not be accommodated.  
The definition of grid metric constraints for the volume 
grid is confined to that set by the AFLR3 application.  
The schemes available are based on interpolation, with 
various forms of decay, of the grid metrics prescribed 
by the supplied boundary triangulation. 

Boundary triangulations for AFLR3 are generated using 
any of the available surface meshing techniques within 
GridEx and therefore are geometry conforming.  In 
general, no new surface nodes are introduced as part of 
the volume grid generation.  Element connectivity, 
however, may be altered as a result of local 
reconnection.  Surface element connectivity is updated 
as part of the volume grid import process.  However, 
viscous cell growth is allowed on planar symmetry 
surfaces.  For these faces, new nodes and connectivity 
will be generated and both must be updated as part of 
the import process. 

This inclusion of AFLR3 demonstrates the ability of the 
framework to handle proprietary and legacy code to the 
level of executing standalone packages while 
maintaining the cohesive nature of the API.  The 
geometry depicted in Figure 6 was selected to 
demonstrate the capabilities afforded by the AFLR3 
volume grid generator.  Complexities included in this 
model are the struts used to connect the two vehicles as 
well as cavities along the wing trailing edge that 
represent gaps between flap surfaces.  An example 

v
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v
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s
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iscous volume grid is shown in Figure 7.  The insets 
how the smooth transition from the semi-structured 
iscous layers to the inviscid region of the grid.  Not 
hown are the cavities representing the juncture of flap 
urfaces.  Similar grid quality was obtained in these 
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regions.  The boundary triangulation generated for this 
example where created using the FELISA surface grid 
generator and a FELISA background grid.  The 
geometry was obtained in the form of a solid model 
from the Unigraphics commercial CAD system and 
processed using the Parasolid driver of CAPrI.  The 
computational domain was defined by a Boolean 
subtraction of the geometry from a “Box” solid 
primitive created within GridEx and assumed half plane 
symmetry.  This operation was carried out within 
GridEx.  The resulting model was defined topologically 
with 412 edge and 134 face entities. This topological 
information was automatically extracted during the grid 
generation procedure. 

CONCLUSION 

An example of an Application Programming Interface 
for the generation of unstructured grids for numerical 
analysis has been presented.  Through the use of the 
interface, derivative applications as well as individual 
implementations of grid related algorithms can reduce 
their dependence on a single method of execution and 
thereby expand their potential for extension and future 
growth.  Algorithms may be exchanged beneath the 
interface to provide alternative modes of operation and 
thereby expand their applicability.  The API has been 
described and demonstrated with a sample application 
for the construction of unstructured tetrahedral volume 
grids. 
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